Sheet 8

Problem $1(2+2+2+2$ Points)
Using our classification and by comparing coefficients, prove the following identities of modular forms.
Derive in each case an identity between the $\sigma_{k}(n)$ and test it for small n.
a) $E_{4}^{2}=E_{8}$
b) $E_{6} E_{8}=E_{14}$
c) $E_{6}=E_{4} E_{2}-\frac{3}{2 \pi 1} E_{4}^{\prime}$
d) $E_{8}=E_{6} E_{2}-\frac{1}{\pi_{1}} E_{6}^{\prime}$

Problem 2 ($3+1+2+3$ Points)
The q-coefficients of $(2 \pi)^{-12} \Delta(z)=\eta(z)^{24}$ are called Ramanujan numbers $\tau(n)$

$$
q \prod_{n=1}^{\infty}\left(1-q^{n}\right)^{24}=\sum_{n=1}^{\infty} \tau(n) q^{n}
$$

a) Calculate $\tau(n)$ for $n=1, \ldots 6$.
b) Verify empirically for $n=2 \cdot 3$ and $n=2^{2}$ the following two important properties (which we will prove later)
$\tau(m n)=\tau(m) \tau(n)$ for $(m, n)=1 \quad \tau\left(p^{l}\right)=\tau\left(p^{l-1}\right) \tau(p)-p^{11} \tau\left(p^{l-2}\right)$ for p prime
Verify also the Ramanujan conjecture $|\tau(n)| \leq \sigma_{0}(n) n^{11 / 2}$.
c) Assume for now these two properties hold in general, then prove the following Euler product

$$
\sum_{n=1}^{\infty} \tau(n) n^{-s}=\prod_{p \text { prime }} \frac{1}{1-\tau(p) p^{-s}+p^{11} p^{-2 s}}
$$

d) Show $E_{12}-E_{6}^{2}=c \Delta$ with $c=(2 \pi)^{-12} 2^{6} 3^{5} 7^{2} / 691$. Deduce an expression for $\tau(n)$ in terms of $\sigma_{11}(n), \sigma_{5}(n)$ and prove $\tau(n) \equiv \sigma_{11}(n)$ modulo 691.

Problem 3 (3 Points)
Find the invariant $j(L)$ for the lattices L underlying our favourite elliptic curves $y^{2}=x^{3}-n^{3} x$ and $x^{3}+y^{3}=1$
Hint: The latter is equivalent to $y^{2}=x^{3}-432$ by Sheet 3 Problem 4)

