Elliptic Curves and Modular Forms (Master) Wintersemester 2017/18 JProf. Dr. Simon Lentner Algebra and Number Theory FB Mathematik, Universität Hamburg

Sheet 8

Problem 1 (2+2+2+2 Points)

Using our classification and by comparing coefficients, prove the following identities of modular forms.

Derive in each case an identity between the $\sigma_k(n)$ and test it for small n.

- a) $E_4^2 = E_8$
- b) $E_6 E_8 = E_{14}$
- c) $E_6 = E_4 E_2 \frac{3}{2\pi i} E'_4$
- d) $E_8 = E_6 E_2 \frac{1}{\pi_1} E_6'$

Problem 2 (3+1+2+3 Points)

The q-coefficients of $(2\pi)^{-12}\Delta(z) = \eta(z)^{24}$ are called Ramanujan numbers $\tau(n)$

$$q \prod_{n=1}^{\infty} (1-q^n)^{24} = \sum_{n=1}^{\infty} \tau(n) q^n$$

- a) Calculate $\tau(n)$ for $n = 1, \dots 6$.
- b) Verify empirically for $n = 2 \cdot 3$ and $n = 2^2$ the following two important properties (which we will prove later)

$$\tau(mn) = \tau(m)\tau(n)$$
 for $(m,n) = 1$ $\tau(p^l) = \tau(p^{l-1})\tau(p) - p^{11}\tau(p^{l-2})$ for p prime

Verify also the Ramanujan conjecture $|\tau(n)| \leq \sigma_0(n) n^{11/2}$.

c) Assume for now these two properties hold in general, then prove the following Euler product

$$\sum_{n=1}^{\infty} \tau(n) n^{-s} = \prod_{p \text{ prime}} \frac{1}{1 - \tau(p) p^{-s} + p^{11} p^{-2s}}$$

d) Show $E_{12} - E_6^2 = c\Delta$ with $c = (2\pi)^{-12} 2^6 3^5 7^2 / 691$. Deduce an expression for $\tau(n)$ in terms of $\sigma_{11}(n), \sigma_5(n)$ and prove $\tau(n) \equiv \sigma_{11}(n)$ modulo 691.

Problem 3 (3 Points)

Find the invariant j(L) for the lattices L underlying our favourite elliptic curves $y^2 = x^3 - n^3 x$ and $x^3 + y^3 = 1$ Hint: The latter is equivalent to $y^2 = x^3 - 432$ by Sheet 3 Problem 4)