Sheet 11

Problem 1 (3+3 Points)
Some functions even transform nicely under elements not in $\mathrm{SL}_{2}(\mathbb{Z})$:
Recall the formula for

$$
\Theta_{\sqrt{2} \mathbb{Z}}^{2}\left(\alpha_{4} \cdot z\right), \quad \alpha_{n}=\left(\begin{array}{cc}
0 & -1 \\
N & 0
\end{array}\right)
$$

a) Use this and the fact that $-1, T,-S T^{4} S=\alpha_{4} T \alpha_{4}^{-1}$ generate Γ_{0} (4) (which you don't have to prove, see Koblitz III. 1 Problem 13) to show that

$$
\Theta_{\sqrt{2} \mathbb{Z}}^{2}(\gamma \cdot z)=(c z+d)^{1}(-1)^{(d-1) / 2} \Theta_{\sqrt{2} \mathbb{Z}}^{2}(z), \quad \gamma=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \Gamma_{0}(4)
$$

which means $\Theta_{\sqrt{2} \mathbb{Z}}^{2}(z) \in \mathrm{M}_{1}(4, \chi)$ for the nontrivial character $\chi: \mathbb{Z}_{4}^{\times} \rightarrow \mathbb{C}^{\times}$.
b) Show that $\Theta_{\sqrt{2} \mathbb{Z}}^{2}=\sum_{n=0}^{\infty} a_{n} q^{n}$ where a_{n} is the number of ways to write n as a sum of two squares of integers. Prove that for odd primes p

$$
a_{p}=4\left(1+(-1)^{(p-1) / 2}\right)
$$

Check for $n=1, \ldots 10$ the following general formula:

$$
a_{n}=4 \sum_{\text {odd } d \mid n}(-1)^{(d-1) / 2}
$$

Remark: We will prove this next week using so-called Hecke operators.

Problem 3 ($3+2+2+2+3+2$ Points)
Let $N>1$ and (a, b) a pair of integers modulo N.
We consider for $k \geq 3$ the Level N Eisenstein series

$$
G_{k}^{(a, b) \bmod N}(z):=\sum_{(m, n)=(a, b) \bmod N}(m z+n)^{-k} \quad(\text { exlcuding }(m, n)=(0,0))
$$

a) Prove that $G_{k}^{(a, b) \bmod N}(z)$ is in $\mathrm{M}_{k}(\Gamma(N))$ and $G_{k}^{(0, b) \bmod N}(z)$ is even in $\mathrm{M}_{k}\left(\Gamma_{1}(N)\right)$. Hint: Holomorphicity at the cusps becomes much easier if you glimpse to b).
b) Determine what happens if we apply an arbitrary $\gamma \in \mathrm{SL}_{2}(\mathbb{Z})$ to $G_{k}^{(a, b) \bmod N}(z)$. In particular relate $G_{k}^{(a, b) \bmod { }^{N}}(z)$ and $G_{k}^{-(a, b) \bmod N}(z)$
c) As for ordinary Eisenstein series, relate $G_{k}^{(a, b) \bmod { }^{N}}(z)$ to the Taylor coefficients of the Weierstra function $\wp_{L}\left(\frac{a z+b}{N}\right)$ for the respective lattice $L(z)=z \mathbb{Z}+\mathbb{Z}$ at a point of finite order $\frac{a z+b}{N}$.
d) Prove that $G_{3}^{(0,1) \bmod 3}(z)$ is in $\mathrm{M}_{3}(3, \chi)$ for the nontrivial character $\chi: \mathbb{Z}_{3}^{\times} \rightarrow \mathbb{C}^{\times}$.
e) As for ordinary Eisenstein series, give a q-expansion formula for $G_{k}^{(0, b) \bmod N}(z)$. Why are only integral q-powers appearing?
f) Check on the first couple terms that up to a scalar c

$$
G_{3}^{(0,1) \bmod 3}(z)=c\left(\eta^{3}(z) \eta(3 z)\right)^{3}
$$

